Details

Air Bearings


Air Bearings

Theory, Design and Applications
Tribology in Practice Series 1. Aufl.

von: Farid Al-Bender

111,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.01.2021
ISBN/EAN: 9781118926567
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b><i>Comprehensive treatise on gas bearing theory, design and application<br /><br /></i></b>This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication.</p> <p>The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation and control), treating them comprehensively from theoretical and experimental points of view.</p> <p>Key features:</p> <ul> <li>Systematic and thorough treatment of the topic.</li> <li>Summarizes relevant previous knowledge with extensive references.</li> <li>Includes numerical modelling and solutions useful for practical application.</li> <li>Thorough treatment of the gas-film dynamics problem including active control.</li> <li>Discusses high-speed bearings and applications.</li> </ul> <p><i><br />Air Bearings: Theory, Design and Applications</i> is a useful reference for academics, researchers, instructors, and design engineers.  The contents will help readers to formulate a gas-bearing problem correctly, set up the basic equations, solve them establishing the static and dynamic characteristics, utilise these to examine the scope of the design space of a given problem, and evaluate practical issues, be they in design, construction or testing.</p>
<p>List of contributors</p> <p>List of Tables</p> <p>List of Figures</p> <p>Preface</p> <p>Nomenclature</p> <p>1. Introduction</p> <p>1.1 Gas lubrication in perspective</p> <p>1.1.1 Short history</p> <p>1.2 Capabilities and limitations of gas lubrication</p> <p>1.3 When is the use of air bearings pertinent</p> <p>1.4 Situation of the present work</p> <p>1.5 Classification of air bearings for analysis purposes</p> <p>1.6 Structure of the book 1</p> <p>References</p> <p>2 .General Formulation and Modelling</p> <p>2.1 Introduction</p> <p>2.1.1 Qualitative description of the flow</p> <p>2.2 Basic equations of the flow</p> <p>2.2.1 Continuity equation</p> <p>2.2.2 Navier-Stokes momentum equation</p> <p>2.2.3 The (thermodynamic) Energy equation</p> <p>2.2.4 Equation of State</p> <p>2.2.5 Auxiliary conditions</p> <p>2.2.6 Comment on the solution of the flow problem</p> <p>2.3 Simplification of the flow equations</p> <p>2.3.1 Fluid properties and body forces</p> <p>2.3.2 Truncation of the flow equations</p> <p>2.3.3 Film flow (or channel flow)</p> <p>2.4 Formulation of bearing flow and pressure models</p> <p>2.4.1 The quasi-static flow model for axisymmetric EP bearing</p> <p>2.4.2 The Reynolds plus restrictor model</p> <p>2.5 The basic bearing characteristics</p> <p>2.5.1 The load carrying capacity</p> <p>2.5.2 The axial stiffness</p> <p>2.5.3 The feed mass flow rate</p> <p>2.5.4 The mass flow rate in the viscous region</p> <p>2.5.5 The tangential resistive, ”friction” force</p> <p>2.6 Normalization and similitude</p> <p>2.6.1 The axisymmetric flow problem</p> <p>2.6.2 Geometry</p> <p>2.6.3 Dimensionless parameters and similitude</p> <p>2.6.4 The Reynolds equation</p> <p>2.6.5 The bearing characteristics</p> <p>2.6.6 Static similarity of two bearings</p> <p>2.7 Methods of solution</p> <p>2.7.1 Analytic methods</p> <p>2.7.2 Semi-analytic Methods</p> <p>2.7.3 Purely numerical methods</p> <p>2.8 Summary</p> <p>References</p> <p>3. Flow into the bearing gap</p> <p>3.1 Introduction</p> <p>3.2 Entrance to a parallel channel (gap) with stationary, parallel walls</p> <p>3.2.1 Analysis of flow development</p> <p>3.3 Results and discussion</p> <p>3.3.1 Limiting cases</p> <p>3.3.2 Method of solution</p> <p>3.3.3 Determination of the entrance length into a plane channel</p> <p>3.4 The case of radial flow of a polytropically compressible fluid between nominally parallel plates</p> <p>3.4.1 Conclusions on pressure-fed entrance</p> <p>3.5 Narrow channel entrance by shear-induced flow</p> <p>3.5.1 Stability of viscous laminar flow at the entrance</p> <p>3.5.2 Development of the flow upstream of a slider bearing</p> <p>3.5.3 Development of the flow downstream of the gap entrance</p> <p>3.5.4 Method of solution</p> <p>3.5.5 Conclusions regarding shear-induced entrance flow</p> <p>3.6 Summary</p> <p>References</p> <p>4. Reynolds Equation: Derivation, forms and interpretations</p> <p>4.1 Introduction</p> <p>4.2 The Reynolds equation</p> <p>4.3 The Reynolds Equation for various film/bearing arrangements and coordinate systems</p> <p>4.3.1 Cartesian coordinates (x; y)</p> <p>4.3.2 Plain polar coordinates (r; _)</p> <p>4.3.3 Cylinderical coordinates (z; _) with constant R</p> <p>4.3.4 Conical coordinates (r; _) (_ = _ = constant)</p> <p>4.3.5 Spherical coordinates (_; _) (r = R = constant)</p> <p>4.4 Interpretation of the Reynolds Equation when both surfaces are moving and not flat</p> <p>4.4.1 Stationary inclined upper surface, sliding lower member</p> <p>4.4.2 Pure surface motion</p> <p>4.4.3 Inclined moving upper surface with features</p> <p>4.4.4 Moving periodic feature on one or both surfaces</p> <p>4.5 Neglected flow effects</p> <p>4.6 Wall smoothness effects</p> <p>4.6.1 Effect of surface roughness</p> <p>4.7 Slip at the walls</p> <p>4.8 Turbulence</p> <p>4.8.1 Formulation</p> <p>4.9 Approximate methods for incorporating the convective terms in integral flow formulations and the modified Reynolds Equation</p> <p>4.9.1 Introduction</p> <p>4.9.2 Analysis</p> <p>4.9.3 Limiting solution: the Reynolds equation</p> <p>4.9.4 Approximate solutions to steady channel entrance problems</p> <p>4.9.5 Approximation of convective terms by averaging: the modified Reynolds Equation</p> <p>4.9.6 Approximation of convective terms by averaging in turbulent flow</p> <p>4.9.7 summary</p> <p>4.10 Closure</p> <p>References</p> <p>5. Modelling of Radial Flow in Externally Pressurised Bearings</p> <p>5.1 Introduction</p> <p>5.2 Radial flow in the gap and its modelling</p> <p>5.3 Lumped parameter models</p> <p>5.3.1 The orifice/nozzle formula</p> <p>5.3.2 Vohr’s correlation formula</p> <p>5.4 Short review of other methods</p> <p>5.4.1 Approximation of the inertia (or convective) terms</p> <p>5.4.2 The momentum integral method</p> <p>5.4.3 Series expansion</p> <p>5.4.4 Pure numerical solutions</p> <p>5.5 Application of the method of “separation of variables”</p> <p>5.5.1 Boundary conditions on I</p> <p>5.5.2 Flow from stagnation to gap entrance</p> <p>5.5.3 The density function in the gap</p> <p>5.5.4 Solution procedure</p> <p>5.6 Results and discussion</p> <p>5.6.1 Qualitative trends</p> <p>5.6.2 Comparison with experiments</p> <p>5.7 Other comparisons</p> <p>5.8 Formulation of a lumped-parameter inherent compensator model</p> <p>5.8.1 The entrance coefficient of discharge</p> <p>5.8.2 Calculation of Cd</p> <p>5.8.3 The normalized inlet flow rate</p> <p>5.8.4 Solution of the static axisymmetric bearing problem by the Reynolds/compensator model</p> <p>5.9 Summary</p> <p>References</p> <p>6. Basic Characteristics of Circular Centrally Fed Aerostatic Bearings</p> <p>6.1 Introduction</p> <p>6.2 Axial characteristics: Load, stiffness and flow</p> <p>6.2.1 Determination of the pressure distribution</p> <p>6.2.2 Typical results</p> <p>6.2.3 Characteristics with given supply pressure</p> <p>6.2.4 Conclusions on axial characteristics</p> <p>6.3 Tilt and misalignment characteristics (Al-Bender 1992; Al-Bender and</p> <p>Van Brussel 1992)</p> <p>6.3.1 Analysis</p> <p>6.3.2 Theoretical results</p> <p>6.3.3 Experimental investigation</p> <p>6.3.4 Results, comparison and discussion</p> <p>6.3.5 Conclusions on tilt</p> <p>6.4 The influence of relative sliding velocity on aerostatic bearing characteristics</p> <p>(Al-Bender 1992)</p> <p>6.4.1 Formulation of the problem</p> <p>6.4.2 Qualitative considerations of the influence of relative velocity</p> <p>6.4.3 Solution method</p> <p>6.4.4 Results and discussion</p> <p>6.4.5 Conclusions on relative sliding</p> <p>6.5 Summary</p> <p>References</p> <p>7. Dynamic Characteristics of Circular Centrally Fed Aerostatic Bearing Films, and the Problem of Pneumatic Stability</p> <p>7.1 Introduction</p> <p>7.1.1 Pneumatic instability</p> <p>7.1.2 Squeeze film</p> <p>7.1.3 Active compensation</p> <p>7.1.4 Objeetives and layout of this study</p> <p>7.2 Review of past treatments</p> <p>7.2.1 Models and theory</p> <p>7.2.2 System analysis tools and stability criteria</p> <p>7.2.3 Methods of stabilization</p> <p>7.2.4 Discussion and evaluation</p> <p>7.3 Formulation of the linearized model</p> <p>7.3.1 Basic assumptions</p> <p>7.3.2 Basic equations</p> <p>7.3.3 The perturbation procedure</p> <p>7.3.4 Range of validity of the proposed model</p> <p>7.3.5 Special and limiting cases</p> <p>7.4 Solution</p> <p>7.4.1 Integration of the linearized Reynolds Equation</p> <p>7.4.2 Bearing dynamic characteristics</p> <p>7.5 Results and discussion</p> <p>7.5.1 General characteristics and Similitude</p> <p>7.5.2 The supply pressure response Kp</p> <p>7.5.3 Comparison with experiment</p> <p>7.6 Summary</p> <p>References</p> <p>8. Aerodynamic action: Self-acting bearing principles and configurations</p> <p>8.1 Introduction</p> <p>8.2 The aerodynamic action and the effect of compressibility</p> <p>8.3 Self-acting or EP Bearings?</p> <p>8.3.1 Energy efficiency of self-acting bearings</p> <p>8.3.2 The viscous motor</p> <p>8.4 Dimensionless formulation of the Reynolds equation</p> <p>8.5 Some basic aerodynamic bearing configurations</p> <p>8.5.1 Slider bearings</p> <p>8.6 Grooved-surface bearings</p> <p>8.6.1 Derivation of the Narrow-Groove Theory (NGT) equation for</p> <p>grooved bearings</p> <p>8.6.2 Assumptions</p> <p>8.6.3 Flow in the x-direction</p> <p>8.6.4 Flow in the y-direction</p> <p>8.6.5 Squeeze volume</p> <p>8.6.6 Inclined-grooves Reynolds equation</p> <p>8.6.7 Globally compressible Reynolds equation</p> <p>8.6.8 The case when both surfaces are moving</p> <p>8.6.9 Discussion and properties of the solution</p> <p>8.6.10 The case of stationary grooves versus that of moving grooves</p> <p>8.6.11 Grooved bearing embodiments</p> <p>8.7 Rotary bearings</p> <p>8.7.1 Journal bearings</p> <p>8.8 Dynamic characteristics</p> <p>8.9 Similarity and scale effects</p> <p>8.10 Hybrid bearings</p> <p>8.11 summary</p> <p>References</p> <p>9. Journal Bearings</p> <p>9.1 Introduction</p> <p>9.1.1 Geometry and Notation</p> <p>9.1.2 Basic Equation</p> <p>9.2 Basic JB characteristics</p> <p>9.3 Plain Self-acting</p> <p>9.3.1 Small-eccentricity perturbation static-pressure solution</p> <p>9.3.2 Dynamic characteristics</p> <p>9.4 Dynamic stability of a JB and the problem of half-speed whirl</p> <p>9.4.1 General numerical solution</p> <p>9.5 Herringbone Grooved Journal Bearings (HGJB)</p> <p>9.5.1 Static characteristics</p> <p>9.5.2 Dynamic characteristics</p> <p>9.6 EP Journal Bearings</p> <p>9.6.1 Single feed plane</p> <p>9.6.2 Other possible combinations</p> <p>9.7 Hybrid JB’s</p> <p>9.8 Comparison of the three types in regard to whirl critical mass</p> <p>9.9 Summary</p> <p>References</p> <p>10. Dynamic Whirling Behaviour and the Rotordynamic Stability Problem</p> <p>10.1 Introduction</p> <p>10.2 The nature and classification of whirl motion</p> <p>10.2.1 Synchronous whirl</p> <p>10.2.2 Self-excited whirl</p> <p>10.3 Study of the self-excited whirling phenomenon</p> <p>10.3.1 Description and terminology</p> <p>10.3.2 Half-speed whirl in literature</p> <p>10.3.3 Sensitivity analysis to identify the relevant parameters</p> <p>10.4 Techniques for enhancing stability</p> <p>10.4.1 Literature overview on current techniques</p> <p>10.5 Optimum Design of Externally Pressurised Journal Bearings for High-Speed</p> <p>Applications</p> <p>10.6 Reducing or eliminating the cross-coupling</p> <p>10.7 Introducing external damping</p> <p>10.8 Summary</p> <p>References</p> <p> </p> <p>11. Tilting Pad Air Bearings</p> <p>11.1 Introduction</p> <p>11.2 Plane slider bearing</p> <p>11.3 Pivoted pad slider bearing</p> <p>11.3.1 Equivalent bearing stiffness</p> <p>11.4 Tilting pad journal bearing</p> <p>11.4.1 Steady state bearing characteristics</p> <p>11.4.2 Dynamic stiffness of a tilting pad bearing</p> <p>11.5 Dynamic stability</p> <p>11.6 Construction and fabrication aspects</p> <p>11.7 Summary</p> <p>References</p> <p>12. Foil Bearings</p> <p>12.1 Introduction</p> <p>12.2 Compliant material foil bearings: state-of-the-art</p> <p>12.2.1 Early foil bearing developments</p> <p>12.2.2 Recent advances in macro scale foil bearings</p> <p>12.2.3 Recent advances in mesoscopic foil bearings</p> <p>12.3 Self-acting tension foil bearing</p> <p>12.3.1 Effect of foil stiffness</p> <p>12.4 Externally-pressurised tension foil bearing</p> <p>12.4.1 Theoretical Analysis</p> <p>12.4.2 Practical Design of a Prototype</p> <p>12.4.3 Experimental Validation</p> <p>12.5 Bump foil bearing</p> <p>12.5.1 Modeling of a foil bearing with an idealised mechanical structure</p> <p>12.6 Numerical analysis methods for the (compliant) Reynolds equation</p> <p>12.7 Steady-state simulation with FDM and Newton-Raphson</p> <p>12.7.1 Different algorithms to implement the JFO boundary conditions in</p> <p>foil bearings</p> <p>12.7.2 Simulation procedure</p> <p>12.7.3 Steady-state simulation results & discussion</p> <p>12.8 Steady-state properties</p> <p>12.8.1 Load capacity and attitude angle</p> <p>12.8.2 Minimum gap height in middle bearing plane and maximum load capacity</p> <p>12.8.3 Thermal phenomena in foil bearings & cooling air</p> <p>12.8.4 Variable flexible element stiffness and bilinear springs</p> <p>12.8.5 Geometrical preloading</p> <p>12.9 Dynamic properties</p> <p>12.9.1 Dynamic properties calculation with the perturbation method</p> <p>12.9.2 Stiffness and damping coefficients</p> <p>12.9.3 Influence of compliant structure dynamics on bearing characteristics</p> <p>12.9.4 Structural damping in real foil bearings</p> <p>12.10Bearing stability</p> <p>12.10.1 Bearing stability equations</p> <p>12.10.2 Foil bearing stability maps</p> <p>12.10.3 Fabrication Technology</p> <p>12.11Summary</p> <p>References</p> <p>13 .Porous Bearings</p> <p>13.1 Introduction</p> <p>13.2 Modelling of porous bearing</p> <p>13.2.1 Feed flow: Darcy’s law</p> <p>13.2.2 Film flow: modified Reynolds equation</p> <p>13.2.3 Boundary conditions for the general case</p> <p>13.2.4 Solution procedure</p> <p>13.3 Static bearing characteristics</p> <p>13.4 Dynamic bearing characteristics</p> <p>13.5 Dynamic film coefficients</p> <p>13.6 Normalisation</p> <p>13.6.1 Aerostatic porous journal bearing</p> <p>13.6.2 Aerostatic porous thrust bearing</p> <p>13.7 Validation of the numerical models</p> <p>13.8 Summary</p> <p>References</p> <p>14 .Hanging Air Bearings and the Over-expansion Method</p> <p>14.1 Introduction</p> <p>14.2 Outline</p> <p>14.2.1 Problem statement</p> <p>14.2.2 Possible solutions</p> <p>14.2.3 Choice of a solution</p> <p>14.3 Problem formulation</p> <p>14.4 Theoretical analysis</p> <p>14.4.1 Basic assumptions</p> <p>14.4.2 Basic equations and definitions</p> <p>14.4.3 Derivation of the pressure equations</p> <p>14.4.4 Normalisation of the final equations</p> <p>14.4.5 Solution procedure</p> <p>14.4.6 Matching the solution with experiment: empirical parameter values</p> <p>14.5 Experimental verification</p> <p>14.5.1 Test apparatus</p> <p>14.5.2 Range of tests</p> <p>14.6 Bearing Characteristics and Optimization</p> <p>14.7 Design methodology</p> <p>14.8 Other details</p> <p>14.9 Brief comparison of the three hanging-bearing solutions</p> <p>14.10Aerodynamic hanging bearings</p> <p>14.10.1 Inclined and tilting pad case</p> <p>14.11Summary</p> <p>References</p> <p>15. Actively Compensated Gas Bearings</p> <p>15.1 Introduction</p> <p>15.2 Essentials of active bearing film compensation</p> <p>15.3 An active bearing prototype with centrally clamped plate surface</p> <p>15.3.1 Simulation model of active air bearing system with conicity control</p> <p>15.3.2 Tests, results and discussion of the active air bearing system</p> <p>15.3.3 Conclusions</p> <p>15.4 Active milling electro-spindle</p> <p>15.4.1 Context sketch</p> <p>15.4.2 Specifications of the spindles</p> <p>15.4.3 Spindle with passive air bearings</p> <p>15.4.4 Active spindle</p> <p>15.4.5 Repetitive Controller design and results</p> <p>15.5 Active manipulation of substrates in the plane of the film</p> <p>15.6 Squeeze-film (SF) bearings</p> <p>15.6.1 Other configurations</p> <p>15.6.2 Assessment of possible inertia effects</p> <p>15.6.3 Ultrasonic levitation and acoustic bearings</p> <p>15.7 Summary</p> <p>References</p> <p>16. Design of an active aerostatic slide</p> <p>16.1 Introduction</p> <p>16.2 A multiphysics active bearing model</p> <p>16.2.1 General formulation of the model</p> <p>16.2.2 Structural flexibility</p> <p>16.2.3 Fluid dynamics</p> <p>16.2.4 Dynamics of the moving elements</p> <p>16.2.5 Piezoelectric actuators</p> <p>16.2.6 Controller</p> <p>16.2.7 Coupled formulation of the model</p> <p>16.3 Bearing performance and model validation</p> <p>16.3.1 Test setup for active aerostatic bearings</p> <p>16.3.2 Active bearing performance and model validation</p> <p>16.3.3 Discussion on the validity of the model</p> <p>16.3.4 Analysis of the relevance of model coupling</p> <p>16.4 Active aerostatic slide</p> <p>16.4.1 Design of the active slide prototype</p> <p>16.4.2 Identification of active slide characteristics</p> <p>16.4.3 Active performance</p> <p>16.5 Summary</p> <p>References</p> <p>17. On the Thermal Characteristics of the Film Flow</p> <p>17.1 Introduction</p> <p>17.2 Basic considerations</p> <p>17.2.1 Isothermal walls</p> <p>17.2.2 Adiabatic walls</p> <p>17.2.3 one adiabatic wall and one isothermal wall</p> <p>17.3 Adiabatic-wall Reynolds equation and the thermal wedge</p> <p>17.3.1 Results and discussion</p> <p>17.3.2 Effect of temperature on gas properties</p> <p>17.3.3 Conclusions on the aeordynamic case</p> <p>17.4 Flow through centrally fed bearing: formulation of the problem</p> <p>17.5 Method of solution</p> <p>17.5.1 Solutions</p> <p>17.6 Results and discussion</p> <p>17.7 Summary</p> <p>References</p> <p>Index</p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p>
<p>All chapters are written in an authoritative yet easy-to-read manner. The introduction of similarity parameters and scale effects in different chapters and a nice blend of experimental comparisons to theoretical analyses sprinkled throughout will appeal to graduate students and researchers. In summary, this comprehensive book on air bearings is a carefully written, methodical, insightful, and welcome contribution to the tribology literature. —Michael Khonsari, <i>Journal of </i><i>Tribology, </i>November 2021.</p> <p>Air bearings are a technology originally developed by the computer industry and which over time has been adopted by precision machining and by very high speed rotating machines. The monographs dedicated to this subject can be counted on the fingers of one hand and the work of Farid Al Bender is an important and welcome contribution. This book gives at the same time solid theoretical bases, presents physical models, details their mathematical formulations and describes a large variety of technical solutions. The reader is delighted by the wealth of information grouped into 17 carefully chosen chapters. —Mihai Arghir, <i>Tribology International</i>, November 2021.</p> <p> </p>
<p><b>Farid Al-Bender, Katholieke Universiteit Leuven, Belgium</b><BR> Dr. Ir. Farid Al-Bender is Hon. Professor in the Department of Mechanical Engineering at KU Leuven, where his main areas of research included air bearing design and fabrication, tribology, friction modelling and non-linear system dynamics. He is the Director of the consultancy bureau Air Bearing Precision Technology and founder of Leuven Air Bearings company (now LAB Motion systems) where he is a board member.
<p><b>Comprehensive treatise on gas bearing theory, design, and application</b></p> <p>This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication. <p>The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation, and control), treating them comprehensively from theoretical and experimental points of view. <p>Key features:<BR> <ul><li>Systematic and thorough treatment of the topic.</li> <li>Summarizes relevant previous knowledge with extensive references.</li> <li>Includes numerical modelling and solutions useful for practical application.</li> <li>Thorough treatment of the gas-film dynamics problem including active control.</li> <li>Discusses high-speed bearings and applications.</li></ul> <p><i>Air Bearings: Theory, Design and Applications</i> is a useful reference for academics, researchers, instructors, and design engineers. The contents will help readers to formulate a gas-bearing problem correctly, set up the basic equations, solve them establishing the static and dynamic characteristics, utilise these to examine the scope of the design space of a given problem, and evaluate practical issues, be they in design, construction, or testing.

Diese Produkte könnten Sie auch interessieren:

Neutron Applications in Earth, Energy and Environmental Sciences
Neutron Applications in Earth, Energy and Environmental Sciences
von: Liyuan Liang, Romano Rinaldi, Helmut Schober
PDF ebook
149,79 €
Nanobioelectronics - for Electronics, Biology, and Medicine
Nanobioelectronics - for Electronics, Biology, and Medicine
von: Andreas Offenhäusser, Ross Rinaldi
PDF ebook
96,29 €
Autonomous Robots
Autonomous Robots
von: Farbod Fahimi
PDF ebook
117,69 €