Details

Functionalized Nanomaterials for Catalytic Application


Functionalized Nanomaterials for Catalytic Application


1. Aufl.

von: Chaudhery Mustansar Hussain, Sudheesh K. Shukla, Bindu Mangla

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.06.2021
ISBN/EAN: 9781119809029
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This is the first handbook that provides an integrated approach for functionalized nanomaterials (FNMs) based catalytic materials.</b></p> <p>With the rapid development in nanotechnology, it is now possible to modulate the physical and chemical properties of nanomaterials with molecular recognition and catalytic functional applications. Such research efforts have resulted in a huge number of catalytic platforms for a broad range of analytes ranging from metal ions, small molecules, ionic liquid and nucleic acids down to proteins. Functionalized nanomaterials (FNMs) have important applications in the environmental, energy and healthcare sectors. Strategies for the synthesis of FNMs have contributed immensely to the textile, construction, cosmetics, biomedical and environmental industries among others.</p> <p>This book highlights the design of functionalized nanomaterials with respect to recent progress in the industrial arena and their respective applications. It presents an inclusive overview encapsulating FNMs and their applications to give the reader a systematic and coherent picture of nearly all relevant up-to-date advancements. Herein, functionalization techniques and processes are presented to enhance nanomaterials that can substantially affect the performance of procedures already in use and can deliver exciting consumer products to match the current lifestyle of modern society.</p>
<p>Preface xvii</p> <p><b>1 Functionalized Nanomaterial (FNM)–Based Catalytic Materials for Water Resources 1<br /></b><i>Sreevidya S., Kirtana Sankara Subramanian, Yokraj Katre, Ajaya Kumar Singh and Jai Singh</i></p> <p>1.1 Introduction 4</p> <p>1.2 Electrocatalysts as FNMs 7</p> <p>1.3 Electro-Fenton/Hetero Electro-Fenton as FNMs 8</p> <p>1.4 Hetero Photo-Fenton as FNMs 13</p> <p>1.4.1 Heterogenous-Fentons-Based FNMs 14</p> <p>1.4.2 Photo-Fentons-Based FNMs 14</p> <p>1.5 Photocatalysts as FMNs 19</p> <p>1.5.1 Carbon-Based FNMs as Photocatalysts 24</p> <p>1.5.1.1 CNT-Based FNMs 24</p> <p>1.5.1.2 Fullerene-Based FNMs 25</p> <p>1.5.1.3 Graphene (G)/Graphene Oxide (GO)–Based FNMs 26</p> <p>1.5.1.4 Graphene-Carbon Nitride/Metal or Metalloid Oxide–Based FNMs 27</p> <p>1.5.1.5 Graphene-Carbon Nitride/QD-Based FNMs 28</p> <p>1.5.2 Polymer Composite–Based FNMs as Photocatalyst 29</p> <p>1.5.3 Metal/Metal Oxide–Based FNMs as Photocatalyst 29</p> <p>1.6 Nanocatalyst Antimicrobials as FNMs 30</p> <p>1.7 Conclusions and Future Perspectives 31</p> <p>References 33</p> <p><b>2 Functionalized Nanomaterial (FNM)–Based Catalytic Materials for Energy Industry 53<br /></b><i>Amarpreet K. Bhatia, Shippi Dewangan, Ajaya K. Singh and Sónia. A.C. Carabineiro</i></p> <p>2.1 Introduction 54</p> <p>2.2 Different Types of Nanomaterials 55</p> <p>2.2.1 Zero-Dimensional (0D) Nanostructures 55</p> <p>2.2.2 One-Dimensional (1D) Nanostructures 56</p> <p>2.2.3 Two-Dimensional (2D) Nanostructures 56</p> <p>2.2.4 Three-Dimensional (3D) Nanostructures 56</p> <p>2.3 Synthesis of Functionalized Nanomaterials 56</p> <p>2.3.1 Chemical Methods 57</p> <p>2.3.2 Ligand Exchange Process 58</p> <p>2.3.3 Grafting of Synthetic Polymers 58</p> <p>2.3.4 Miscellaneous Methods 58</p> <p>2.4 Magnetic Nanoparticles 59</p> <p>2.4.1 Synthesis of Magnetic Nanoparticles 59</p> <p>2.4.2 Characterization of Magnetic Nanoparticles 60</p> <p>2.4.3 Functionalization of Magnetic Nanoparticles 63</p> <p>2.4.3.1 Covalent Bond Formation 64</p> <p>2.4.3.2 Ligand Exchange 64</p> <p>2.4.3.3 Click Reaction 64</p> <p>2.4.3.4 Maleimide Coupling 65</p> <p>2.5 Carbon-Based Nanomaterials 65</p> <p>2.5.1 Functionalization of Carbon Nanomaterials 65</p> <p>2.5.2 Synthesis of Functionalized Carbon Nanotubes and Graphene 67</p> <p>2.6 Application of Functionalized Nanomaterials in the Energy Industry Through Removal of Heavy Metals by Adsorption 67</p> <p>2.6.1 Removal of Arsenic by Magnetic Nanoparticles 74</p> <p>2.6.2 Removal of Cadmium by Magnetic Nanoparticles 75</p> <p>2.6.3 Removal of Chromium by Magnetic Nanoparticles 75</p> <p>2.6.4 Removal of Mercury by Magnetic Nanoparticles 76</p> <p>2.7 Conclusions 76</p> <p>References 77</p> <p><b>3 Bionanotechnology-Based Nanopesticide Application in Crop Protection Systems 89<br /></b><i>Abhisek Saha</i></p> <p>3.1 Introduction 90</p> <p>3.2 Few Words About Pesticide 92</p> <p>3.3 What About Biopesticide Demand 93</p> <p>3.4 A Brief Look on Associates Responsible for Crop Loss 93</p> <p>3.5 Traditional Inclination of Chemical-Based Pest Management 94</p> <p>3.6 Nanotechnology in the Field of Agriculture 95</p> <p>3.7 Why Nanotechnology-Based Agriculture is the Better Option With Special Reference to Nano-Based Pesticide? 95</p> <p>3.8 Biological-Based Pest Management 96</p> <p>3.9 Nano-Based Pest Management 96</p> <p>3.10 Nanopesticides 97</p> <p>3.11 Required to Qualify for Selection as Nanobiopesticides 98</p> <p>3.12 Pestiferous Insect’s Management 99</p> <p>3.12.1 Chemical Nanomaterials 99</p> <p>3.12.2 Bionanomaterials 99</p> <p>3.13 Critical Points for Nanobiopesticides 100</p> <p>3.14 Other Pests 100</p> <p>3.15 Post-Harvest Management and Their Consequences 101</p> <p>3.16 Field Test for Nanobiopesticides for Pest Control 101</p> <p>3.17 Merits and Consequences of Chemical and Bionanomaterials 102</p> <p>3.18 Conclusion 103</p> <p>References 104</p> <p><b>4 Functionalized Nanomaterials (FNMs) for Environmental Applications 109<br /></b><i>Bhavya M.B., Swarnalata Swain, Prangya Bhol, Sudesh Yadav, Ali Altaee, Manav Saxena, Pramila K. Misra and Akshaya K. Samal</i></p> <p>4.1 Introduction 110</p> <p>4.1.1 Methods for the Functionalization of Nanomaterials 110</p> <p>4.1.1.1 Functionalization by Organic Moieties 111</p> <p>4.1.1.2 Surface Polymerization 111</p> <p>4.1.2 Nanomaterial-Functional Group Bonding Type 112</p> <p>4.1.2.1 Functionalization by Covalent Bond 112</p> <p>4.1.2.2 Functionalization by Noncovalent Bond 112</p> <p>4.2 Functionalized Nanomaterials in Environmental Applications 114</p> <p>4.2.1 Chitosan 114</p> <p>4.2.2 Cellulose 117</p> <p>4.2.3 Alumina 121</p> <p>4.2.4 Mixed Composites 124</p> <p>4.2.5 Other Nanocomposites for Environment 126</p> <p>4.3 Conclusion 130</p> <p>Acknowledgements 130</p> <p>References 130</p> <p><b>5 Synthesis of Functionalized Nanomaterial (FNM)–Based Catalytic Materials 135<br /></b><i>Swarnalata Swain, Prangya Bhol, M.B. Bhavya, Sudesh Yadav, Ali Altaee, Manav Saxena, Pramila K. Misra and Akshaya K. Samal</i></p> <p>5.1 Introduction 136</p> <p>5.2 Methods Followed for Fabrication of FNMs 137</p> <p>5.2.1 Co-Precipitation Method 138</p> <p>5.2.2 Impregnation 139</p> <p>5.2.3 Ion Exchange 139</p> <p>5.2.4 Immobilization/Encapsulation 140</p> <p>5.2.5 Sol-Gel Technique 140</p> <p>5.2.6 Chemical Vapor Deposition 141</p> <p>5.2.7 Microemulsion 141</p> <p>5.2.8 Hydrothermal 142</p> <p>5.2.9 Thermal Decomposition 142</p> <p>5.3 Functionalized Nanomaterials 143</p> <p>5.3.1 Carbon-Based FNMs 143</p> <p>5.3.1.1 Carbon-Based FNMs as Heterogeneous Catalysts 145</p> <p>5.3.2 Metal and Metal Oxide–Based FNMs 147</p> <p>5.3.2.1 Functionalization Technique of Metal Oxides 147</p> <p>5.3.2.2 Silver-Based FNMs as Heterogeneous Catalysts 148</p> <p>5.3.2.3 Platinum-Based FNMs as Heterogeneous Catalysts 150</p> <p>5.3.2.4 Pd-Based FNMs as Heterogeneous Catalysts 153</p> <p>5.3.2.5 Zirconia-Based FNMs as Heterogeneous Catalysts 153</p> <p>5.3.3 Biomaterial-Based FNMs 154</p> <p>5.3.3.1 Chitosan/Cellulose-Based FNMs as Heterogeneous Catalysts 155</p> <p>5.3.4 FNMs for Various Other Applications 156</p> <p>5.3.5 Comparison Table 157</p> <p>5.4 Conclusion 158</p> <p>Acknowledgements 159</p> <p>References 159</p> <p><b>6 Functionalized Nanomaterials for Catalytic Applications—Silica and Iron Oxide 169<br /></b><i>Deepali Ahluwalia, Sachin Kumar, Sudhir G. Warkar and Anil Kumar</i></p> <p>6.1 Introduction 169</p> <p>6.2 Silicon Dioxide or Silica 171</p> <p>6.2.1 General 171</p> <p>6.2.2 Synthesis of Silica Nanoparticles 172</p> <p>6.2.2.1 Sol-Gel Method 172</p> <p>6.2.2.2 Microemulsion 172</p> <p>6.2.3 Functionalization of Silica Nanoparticles 174</p> <p>6.2.4 Applications 176</p> <p>6.2.4.1 Epoxidation of Geraniol 176</p> <p>6.2.4.2 Epoxidation of Styrene 177</p> <p>6.3 Iron Oxide 177</p> <p>6.3.1 General 177</p> <p>6.3.2 Synthesis of Functionalized Fe NPs 178</p> <p>6.3.2.1 Biopolymer-Based Synthesis 178</p> <p>6.3.2.2 Plant Extract–Based Synthesis 179</p> <p>6.3.3 Applications 179</p> <p>6.3.3.1 Degradation of Dyes 179</p> <p>6.3.3.2 Wastewater Treatment 181</p> <p>References 182</p> <p><b>7 Nanotechnology for Detection and Removal of Heavy Metals From Contaminated Water 185<br /></b><i>Neha Rani Bhagat and Arup Giri</i></p> <p>7.1 Introduction 186</p> <p>7.2 History of Nanotechnology 186</p> <p>7.3 Heavy Metal Detective Nanotechnology 187</p> <p>7.3.1 Nanotechnology for Arsenic (Aas) Removal 187</p> <p>7.3.2 Nanotechnology for Lead Removal from Water 197</p> <p>7.3.3 Nanotechnology for Cadmium (Cd) Removal from Water 200</p> <p>7.3.4 Nanotechnology for Nickel (Ni) Removal 200</p> <p>7.4 Futuristic Research 209</p> <p>7.5 Conclusion 209</p> <p>References 210</p> <p><b>8 Nanomaterials in Animal Health and Livestock Products 227<br /></b><i>Devi Gopinath, Gauri Jairath and Gorakh Mal</i></p> <p>8.1 Introduction 228</p> <p>8.2 Nanomaterials 230</p> <p>8.3 Nanomaterials and Animal Health 230</p> <p>8.3.1 Role in Disease Diagnostics 230</p> <p>8.3.2 Role in Drug Delivery Systems 232</p> <p>8.3.3 Role in Therapeutics 232</p> <p>8.3.4 Toxicity and Risks 233</p> <p>8.4 Nanomaterials and Livestock Produce 234</p> <p>8.4.1 Nanomaterials and Product Processing 234</p> <p>8.4.1.1 Nanoencapsulation 235</p> <p>8.4.2 Nanomaterials and Sensory Attributes 239</p> <p>8.4.3 Nanomaterials and Packaging 239</p> <p>8.4.3.1 Nanocomposite 240</p> <p>8.4.3.2 Nanosensors 241</p> <p>8.4.4 Safety and Regulations 241</p> <p>8.5 Conclusion 243</p> <p>References 243</p> <p><b>9 Restoring Quality and Sustainability Through Functionalized Nanocatalytic Processes 251<br /></b><i>Nitika Thakur and Bindu Mangla</i></p> <p>9.1 Introduction 252</p> <p>9.1.1 Nanotechnology Toward Attaining Global Sustainability 252</p> <p>9.2 Nano Approach Toward Upgrading Strategies of Water Treatment and Purification 253</p> <p>9.2.1 Nanoremediation Through Engineered Nanomaterials 253</p> <p>9.2.2 Electrospun-Assisted Nanosporus Membrane Utilization 254</p> <p>9.2.3 Surface Makeover Related to Electrospun Nanomaterials 255</p> <p>9.2.4 Restoring Energy Sources Through Nanoscience 255</p> <p>9.3 Conclusion and Future Directions 256</p> <p>References 256</p> <p><b>10 Synthesis and Functionalization of Magnetic and Semiconducting Nanoparticles for Catalysis 261<br /></b><i>Dipti Rawat, Asha Kumari and Ragini Raj Singh</i></p> <p>10.1 Functionalized Nanomaterials in Catalysis 262</p> <p>10.1.1 Magnetic Nanoparticles 262</p> <p>10.1.1.1 Heterogeneous and Homogeneous Catalysis Using Magnetic Nanoparticles 263</p> <p>10.1.1.2 Organic Synthesis by Magnetic Nanoparticles as Catalyst 264</p> <p>10.1.2 Semiconducting Nanoparticles 264</p> <p>10.1.2.1 Homogeneous Catalysis 267</p> <p>10.1.2.2 Heterogeneous Catalysis 267</p> <p>10.1.2.3 Photocatalytic Reaction Mechanism 267</p> <p>10.2 Types of Nanoparticles in Catalysis 268</p> <p>10.2.1 Magnetic Nanoparticles 268</p> <p>10.2.1.1 Ferrites 268</p> <p>10.2.1.2 Ferrites With Shell 269</p> <p>10.2.1.3 Metallic 271</p> <p>10.2.1.4 Metallic Nanoparticles With a Shell 271</p> <p>10.2.2 Semiconducting Nanoparticles 271</p> <p>10.2.2.1 Binary Semiconducting Nanoparticles in Catalysis 272</p> <p>10.2.2.2 Oxide-Based Semiconducting Nanoparticles, for Example, TiO<sub>2</sub>, ZrO<sub>2</sub>, and ZnO 272</p> <p>10.2.2.3 Chalcogenide Semiconducting Nanoparticles for Catalysis 273</p> <p>10.2.2.4 Nitride-Based Semiconducting Photocatalyst 274</p> <p>10.2.2.5 Ternary Oxides 274</p> <p>10.2.2.6 Ternary Chalcogenide Semiconductors 274</p> <p>10.3 Synthesis of Nanoparticles for Catalysis 275</p> <p>10.3.1 Magnetic Nanoparticles 275</p> <p>10.3.1.1 Co-Precipitation Route 275</p> <p>10.3.1.2 Hydrothermal Method 276</p> <p>10.3.1.3 Microemulsion Method 277</p> <p>10.3.1.4 Sono-Chemical Method 278</p> <p>10.3.1.5 Sol-Gel Method 279</p> <p>10.3.1.6 Biological Method 280</p> <p>10.3.2 Semiconducting Nanoparticles 280</p> <p>10.3.2.1 Tollens Method 281</p> <p>10.3.2.2 Microwave Synthesis 281</p> <p>10.3.2.3 Hydrothermal Synthesis 282</p> <p>10.3.2.4 Gas Phase Method 282</p> <p>10.3.2.5 Laser Ablation 282</p> <p>10.3.2.6 Wet-Chemical Approaches 283</p> <p>10.3.2.7 Sol-Gel Method 283</p> <p>10.4 Functionalization of Nanoparticles for Application in Catalysis 283</p> <p>10.4.1 Magnetic Nanoparticles 283</p> <p>10.4.2 Semiconducting Nanoparticles 285</p> <p>10.4.2.1 Noble Valuable Metal Deposition 285</p> <p>10.4.2.2 Functionalization by Ion Doping: Metal or Non-Metal 286</p> <p>10.4.2.3 Semiconductor Composite or Coupling of Two Semiconductors 287</p> <p>10.5 Application-Based Synthesis 287</p> <p>10.5.1 Magnetic Nanoparticles 287</p> <p>10.5.1.1 Silica-Coated Nanoparticles 287</p> <p>10.5.1.2 Carbon-Coated Magnetic Nanoparticles 288</p> <p>10.5.1.3 Polymer-Coated Magnetic Nanoparticles 289</p> <p>10.5.1.4 Semiconductor Shell Formation Over the Magnetic Nanoparticle 290</p> <p>10.5.2 Semiconducting Nanoparticles 290</p> <p>10.5.2.1 Semiconductor Nanomaterials in Solar Cell 290</p> <p>10.5.2.2 Batteries and Fuel Cells 291</p> <p>10.5.2.3 Semiconducting Nanomaterials for Environment 292</p> <p>10.5.2.4 Challenges for Water Treatment Using Nanomaterials 292</p> <p>10.6 Conclusion and Outlook 293</p> <p>References 294</p> <p><b>11 Green Pathways for Palladium Nanoparticle Synthesis: Application and Future Perspectives 303<br /></b><i>Arnab Ghosh, Rajeev V. Hegde, Sandeep Suryabhan Gholap, Siddappa A. Patil and Ramesh B. Dateer</i></p> <p>11.1 Introduction 304</p> <p>11.1.1 Methods for Metal Nanoparticle Synthesis 305</p> <p>11.1.2 Biogenic Synthesis of PdNPs 306</p> <p>11.1.3 Phytochemicals: Constituent of Plant Extract 307</p> <p>11.1.4 Techniques for Characterization of Metal NPs 308</p> <p>11.2 Biosynthesis of PdNPs and Its Applications 308</p> <p>11.2.1 Synthesis of PdNPs Using Black Pepper Plant Extract 308</p> <p>11.2.2 Synthesis of PdNPs Using Papaya Peel 313</p> <p>11.2.3 Synthesis of PdNPs Using Watermelon Rind 315</p> <p>11.2.4 Synthesis of Cellulose-Supported PdNs@PA 316</p> <p>11.2.5 PdNPs Synthesis by Pulicaria glutinosa Extract 318</p> <p>11.2.6 Synthesis of PdNPs using Star Apple 319</p> <p>11.2.7 PdNPs Synthesis Using Ocimum Sanctum Extract 321</p> <p>11.2.8 PdNPs Synthesis Using Gum Olibanum Extract 322</p> <p>11.3 Conclusion and Future Perspectives 323</p> <p>References 324</p> <p><b>12 Metal-Based Nanomaterials: A New Arena for Catalysis 329<br /></b><i>Monika Vats, Gaurav Sharma, Varun Sharma, Varun Rawat, Kamalakanta Behera and Arvind Chhabra</i></p> <p>12.1 Introduction 329</p> <p>12.2 Fabrication Methods of Nanocatalysts 333</p> <p>12.3 Application of Metal-Based Nanocatalysts 335</p> <p>12.4 Types of Nanocatalysis 337</p> <p>12.4.1 Green Nanocatalysis 338</p> <p>12.4.2 Heterogeneous Nanocatalysis 339</p> <p>12.4.3 Homogeneous Nanocatalysis 340</p> <p>12.4.4 Multiphase Nanocatalysis 340</p> <p>12.5 Different Types of Metal-Based Nanoparticles/Crystals Used in Catalysis 340</p> <p>12.5.1 Transition Metal Nanoparticles 341</p> <p>12.5.2 Perovskite-Type Oxides Metal Nanoparticles 342</p> <p>12.5.3 Multi-Metallic/Nano-Alloys/Doped Metal Nanoparticles 343</p> <p>12.6 Structure and Catalytic Properties Relationship 343</p> <p>12.7 Conclusion and Future Prospects 344</p> <p>Acknowledgment 345</p> <p>References 345</p> <p><b>13 Functionalized Nanomaterials for Catalytic Application: Trends and Developments 355<br /></b><i>Meena Kumari, Badri Parshad, Jaibir Singh Yadav and Suresh Kumar</i></p> <p>13.1 Introduction 356</p> <p>13.1.1 Nanocatalysis 357</p> <p>13.1.2 Factors Affecting Nanocatalysis 358</p> <p>13.1.2.1 Size 359</p> <p>13.1.2.2 Shape and Morphology 359</p> <p>13.1.2.3 Catalytic Stability 360</p> <p>13.1.2.4 Surface Modification 360</p> <p>13.1.3 Characterization Techniques 361</p> <p>13.1.4 Principles of Green Chemistry 362</p> <p>13.1.5 Role of Functionalization 363</p> <p>13.1.6 Frequently Used Support Materials 363</p> <p>13.2 Different Types of Nanocatalysts 364</p> <p>13.2.1 Metal Nanoparticles 364</p> <p>13.2.2 Alloys and Intermetallic Compounds 365</p> <p>13.2.3 Single Atom Catalysts 366</p> <p>13.2.4 Magnetically Separable Nanocatalysts 367</p> <p>13.2.5 Metal Organic Frameworks 368</p> <p>13.2.6 Carbocatalysts 369</p> <p>13.3 Catalytic Applications 370</p> <p>13.3.1 Organic Transformation 370</p> <p>13.3.2 Electrocatalysis 374</p> <p>13.3.2.1 Electrocatalytic Reduction of CO<sub>2</sub> 374</p> <p>13.3.2.2 Hydrogen Evolution Reaction 382</p> <p>13.3.2.3 Fuel Cells 382</p> <p>13.3.3 Photocatalysis 389</p> <p>13.3.3.1 Photocatalytic Treatment of Wastewater 391</p> <p>13.3.3.2 Photocatalytic Conversion of CO<sub>2 </sub>Into Fuels 391</p> <p>13.3.3.3 Photocatalytic Hydrogen Evolution From Water 392</p> <p>13.3.4 Conversion of Biomass Into Fuels 396</p> <p>13.3.5 Other Applications 397</p> <p>13.4 Conclusions 398</p> <p>13.4.1 Future Outlook 398</p> <p>References 398</p> <p><b>14 Carbon Dots: Emerging Green Nanoprobes and Their Diverse Applications 417<br /></b><i>Shweta Agarwal and Sonika Bhatia</i></p> <p>14.1 Introduction 417</p> <p>14.2 Classification of Carbon Dots 419</p> <p>14.3 Environmental Sustainable Synthesis of Carbon Dots 424</p> <p>14.3.1 Hydrothermal Treatment 432</p> <p>14.3.2 Solvothermal Treatment 433</p> <p>14.3.3 Microwave-Assisted Method 434</p> <p>14.3.4 Pyrolysis Treatment 435</p> <p>14.3.5 Chemical Oxidation 436</p> <p>14.4 Characterization of Carbon Dots 438</p> <p>14.5 Optical and Photocatalytic Properties of Carbon Dots 440</p> <p>14.5.1 Absorbance 441</p> <p>14.5.2 Photoluminescence 441</p> <p>14.5.3 Quantum Yield 443</p> <p>14.5.4 Up-Conversion Photoluminescence (Anti-Stokes Emission) 444</p> <p>14.5.5 Photoinduced Electron Transfer 445</p> <p>14.5.6 Photocatalytic Property 446</p> <p>14.6 Carbon Dots in Wastewater Treatment 449</p> <p>14.6.1 Heavy Metal Removal 451</p> <p>14.6.2 Removal of Dyes 452</p> <p>14.6.3 Photodegradation of Antibiotics 453</p> <p>14.6.4 Removal of Other Pollutants 453</p> <p>14.6.5 Bacterial Inactivation 454</p> <p>14.6.6 Oil Removal 454</p> <p>14.7 Carbon Dots for Energy Applications and Environment Safety 454</p> <p>14.7.1 Solar Light–Driven Splitting of Water 455</p> <p>14.7.2 Photocatalytic CO<sub>2</sub> Reduction 457</p> <p>14.7.3 Photocatalytic Synthetic Organic Transformations 459</p> <p>14.8 Biomedical Applications of Carbon Dots 460</p> <p>14.8.1 Bioimaging 461</p> <p>14.8.2 Carbon Dots as Biosensors, pH Sensors, and Temperature Sensors 463</p> <p>14.8.3 Carbon Dots for Drug Delivery 466</p> <p>14.8.4 Carbon Dots as Carriers for Neurotherapeutic Agents 468</p> <p>14.9 Ethical, Legal, and Sociological Implications of Carbon Dots 469</p> <p>14.10 Conclusion and Future Outlook 471</p> <p>References 472</p> <p>Index 493</p>
<p><b>Chaudhery Mustansar Hussain</b>, PhD is an adjunct professor, academic advisor and Lab Director in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA. His research is focused on the applications of nanotechnology & advanced materials in environment, analytical chemistry and various industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as a prolific author and editor of many scientific monographs and handbooks in his research areas. <p><b>Sudheesh K. Shukla</b>, PhD is a postdoctoral researcher at Shandong University China. His research work focuses on interfacing the chemistry (materials science) and engineering for better healthcare (biology) and environmental applications. Dr. Shukla has extensive experience in materials science (materials design, synthesis and characterization), nanocomposite synthesis, nanobiotechnology, catalysis science and biosensors/sensors. <p><b>Bindu Mangla</b> is an assistant professor in the Department of Chemistry, J C Bose University of Science & Technology, YMCA, Faridabad (Hr), India. She completed her PhD in Chemistry, from Manav Rachna International Institute of Research and Studies (erstwhile MRIU). She has a keen research interest in the area of materials chemistry, nanotechnology, corrosion chemistry and atmospheric chemistry.
<p><b>This is the first handbook that provides an integrated approach for functionalized nanomaterials (FNMs) based catalytic materials.</b> <p>With the rapid development in nanotechnology, it is now possible to modulate the physical and chemical properties of nanomaterials with molecular recognition and catalytic functional applications. Such research efforts have resulted in a huge number of catalytic platforms for a broad range of analytes ranging from metal ions, small molecules, ionic liquid and nucleic acids down to proteins. Functionalized nanomaterials (FNMs) have important applications in the environmental, energy and healthcare sectors. Strategies for the synthesis of FNMs have contributed immensely to the textile, construction, cosmetics, biomedical and environmental industries among others. <p>This book highlights the design of functionalized nanomaterials with respect to recent progress in the industrial arena and their respective applications. It presents an inclusive overview encapsulating FNMs and their applications to give the reader a systematic and coherent picture of nearly all relevant up-to-date advancements. Herein, functionalization techniques and processes are presented to enhance nanomaterials that can substantially affect the performance of procedures already in use and can deliver exciting consumer products to match the current lifestyle of modern society. <p><b>Audience</b> <p>Because of the integral nature of the topics, it will also be of interest to a broad spectrum of audiences, including industrial scientists, industrial engineers, nanotechnologists, materials scientists, chemists, physicists, pharmacists, biologists, chemical engineers, and all those who are involved and interested in the future frontiers of nanomaterials.

Diese Produkte könnten Sie auch interessieren: