Details

Fundamentals of Liquid Crystal Devices


Fundamentals of Liquid Crystal Devices


Wiley Series in Display Technology 2. Aufl.

von: Deng-Ke Yang, Shin-Tson Wu

99,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.09.2014
ISBN/EAN: 9781118751954
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves.</p> <p>This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research.</p> <ul> <li>Key features:<br />Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays;</li> <li>Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices;</li> <li>Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices;</li> <li>Chapters conclude with detailed homework problems to further cement an understanding of the topic.</li> </ul>
<p>Series Editor’s Foreword xiii</p> <p>Preface to the First Edition xv</p> <p>Preface to the Second Edition xvii</p> <p><b>1 Liquid Crystal Physics 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Thermodynamics and Statistical Physics 5</p> <p>1.2.1 Thermodynamic laws 5</p> <p>1.2.2 Boltzmann distribution 6</p> <p>1.2.3 Thermodynamic quantities 7</p> <p>1.2.4 Criteria for thermodynamical equilibrium 9</p> <p>1.3 Orientational Order 10</p> <p>1.3.1 Orientational order parameter 11</p> <p>1.3.2 Landau–de Gennes theory of orientational order in nematic phase 13</p> <p>1.3.3 Maier–Saupe theory 18</p> <p>1.4 Elastic Properties of Liquid Crystals 21</p> <p>1.4.1 Elastic properties of nematic liquid crystals 21</p> <p>1.4.2 Elastic properties of cholesteric liquid crystals 24</p> <p>1.4.3 Elastic properties of smectic liquid crystals 26</p> <p>1.5 Response of Liquid Crystals to Electromagnetic Fields 27</p> <p>1.5.1 Magnetic susceptibility 27</p> <p>1.5.2 Dielectric permittivity and refractive index 29</p> <p>1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces 38</p> <p>1.6.1 Anchoring energy 38</p> <p>1.6.2 Alignment layers 39</p> <p>1.7 Liquid crystal director elastic deformation 40</p> <p>1.7.1 Elastic deformation and disclination 40</p> <p>1.7.2 Escape of liquid crystal director in disclinations 42</p> <p>Homework Problems 48</p> <p>References 49</p> <p><b>2 Propagation of Light in Anisotropic Optical Media 51</b></p> <p>2.1 Electromagnetic Wave 51</p> <p>2.2 Polarization 54</p> <p>2.2.1 Monochromatic plane waves and their polarization states 54</p> <p>2.2.2 Linear polarization state 55</p> <p>2.2.3 Circular polarization states 55</p> <p>2.2.4 Elliptical polarization state 56</p> <p>2.3 Propagation of Light in Uniform Anisotropic Optical Media 59</p> <p>2.3.1 Eigenmodes 60</p> <p>2.3.2 Orthogonality of eigenmodes 65</p> <p>2.3.3 Energy flux 66</p> <p>2.3.4 Special cases 67</p> <p>2.3.5 Polarizers 69</p> <p>2.4 Propagation of Light in Cholesteric Liquid Crystals 72</p> <p>2.4.1 Eigenmodes 72</p> <p>2.4.2 Reflection of cholesteric liquid crystals 81</p> <p>2.4.3 Lasing in cholesteric liquid crystals 84</p> <p>Homework Problems 85</p> <p>References 86</p> <p><b>3 Optical Modeling Methods 87</b></p> <p>3.1 Jones Matrix Method 87</p> <p>3.1.1 Jones vector 87</p> <p>3.1.2 Jones matrix 88</p> <p>3.1.3 Jones matrix of non-uniform birefringent film 91</p> <p>3.1.4 Optical properties of twisted nematic 92</p> <p>3.2 Mueller Matrix Method 98</p> <p>3.2.1 Partially polarized and unpolarized light 98</p> <p>3.2.2 Measurement of the Stokes parameters 100</p> <p>3.2.3 The Mueller matrix 102</p> <p>3.2.4 Poincaré sphere 104</p> <p>3.2.5 Evolution of the polarization states on the Poincaré sphere 106</p> <p>3.2.6 Mueller matrix of twisted nematic liquid crystals 110</p> <p>3.2.7 Mueller matrix of non-uniform birefringence film 112</p> <p>3.3 Berreman 4 × 4 Method 113</p> <p>Homework Problems 124</p> <p>References 125</p> <p><b>4 Effects of Electric Field on Liquid Crystals 127</b></p> <p>4.1 Dielectric Interaction 127</p> <p>4.1.1 Reorientation under dielectric interaction 128</p> <p>4.1.2 Field-induced orientational order 129</p> <p>4.2 Flexoelectric Effect 132</p> <p>4.2.1 Flexoelectric effect in nematic liquid crystals 132</p> <p>4.2.2 Flexoelectric effect in cholesteric liquid crystals 136</p> <p>4.3 Ferroelectric Liquid Crystal 138</p> <p>4.3.1 Symmetry and polarization 138</p> <p>4.3.2 Tilt angle and polarization 140</p> <p>4.3.3 Surface stabilized ferroelectric liquid crystals 141</p> <p>4.3.4 Electroclinic effect in chiral smectic liquid crystal 144</p> <p>Homework Problems 146</p> <p>References 147</p> <p><b>5 Fréedericksz Transition 149</b></p> <p>5.1 Calculus of Variation 149</p> <p>5.1.1 One dimension and one variable 150</p> <p>5.1.2 One dimension and multiple variables 153</p> <p>5.1.3 Three dimensions 153</p> <p>5.2 Fréedericksz Transition: Statics 153</p> <p>5.2.1 Splay geometry 154</p> <p>5.2.2 Bend geometry 158</p> <p>5.2.3 Twist geometry 160</p> <p>5.2.4 Twisted nematic cell 161</p> <p>5.2.5 Splay geometry with weak anchoring 164</p> <p>5.2.6 Splay geometry with pretilt angle 165</p> <p>5.3 Measurement of Anchoring Strength 166</p> <p>5.3.1 Polar anchoring strength 167</p> <p>5.3.2 Azimuthal anchoring strength 169</p> <p>5.4 Measurement of Pretilt Angle 171</p> <p>5.5 Fréedericksz Transition: Dynamics 175</p> <p>5.5.1 Dynamics of Fréedericksz transition in twist geometry 175</p> <p>5.5.2 Hydrodynamics 176</p> <p>5.5.3 Backflow 182</p> <p>Homework Problems 187</p> <p>References 188</p> <p><b>6 Liquid Crystal Materials 191</b></p> <p>6.1 Introduction 191</p> <p>6.2 Refractive Indices 192</p> <p>6.2.1 Extended Cauchy equations 192</p> <p>6.2.2 Three-band model 193</p> <p>6.2.3 Temperature effect 195</p> <p>6.2.4 Temperature gradient 198</p> <p>6.2.5 Molecular polarizabilities 199</p> <p>6.3 Dielectric Constants 201</p> <p>6.3.1 Positive Δε liquid crystals for AMLCD 202</p> <p>6.3.2 Negative Δε liquid crystals 202</p> <p>6.3.3 Dual-frequency liquid crystals 203</p> <p>6.4 Rotational Viscosity 204</p> <p>6.5 Elastic Constants 204</p> <p>6.6 Figure-of-Merit (FoM) 205</p> <p>6.7 Index Matching between Liquid Crystals and Polymers 206</p> <p>6.7.1 Refractive index of polymers 206</p> <p>6.7.2 Matching refractive index 208</p> <p>Homework problems 210</p> <p>References 210</p> <p><b>7 Modeling Liquid Crystal Director Configuration 213</b></p> <p>7.1 Electric Energy of Liquid Crystals 213</p> <p>7.1.1 Constant charge 214</p> <p>7.1.2 Constant voltage 215</p> <p>7.1.3 Constant electric field 218</p> <p>7.2 Modeling Electric Field 218</p> <p>7.3 Simulation of Liquid Crystal Director Configuration 221</p> <p>7.3.1 Angle representation 221</p> <p>7.3.2 Vector representation 225</p> <p>7.3.3 Tensor representation 228</p> <p>Homework Problems 232</p> <p>References 232</p> <p><b>8 Transmissive Liquid Crystal Displays 235</b></p> <p>8.1 Introduction 235</p> <p>8.2 Twisted Nematic (TN) Cells 236</p> <p>8.2.1 Voltage-dependent transmittance 237</p> <p>8.2.2 Film-compensated TN cells 238</p> <p>8.2.3 Viewing angle 241</p> <p>8.3 In-Plane Switching Mode 241</p> <p>8.3.1 Voltage-dependent transmittance 242</p> <p>8.3.2 Response time 243</p> <p>8.3.3 Viewing angle 246</p> <p>8.3.4 Classification of compensation films 246</p> <p>8.3.5 Phase retardation of uniaxial media at oblique angles 246</p> <p>8.3.6 Poincaré sphere representation 249</p> <p>8.3.7 Light leakage of crossed polarizers at oblique view 250</p> <p>8.3.8 IPS with a positive a film and a positive c film 254</p> <p>8.3.9 IPS with positive and negative a films 259</p> <p>8.3.10 Color shift 263</p> <p>8.4 Vertical Alignment Mode 263</p> <p>8.4.1 Voltage-dependent transmittance 263</p> <p>8.4.2 Optical response time 264</p> <p>8.4.3 Overdrive and undershoot voltage method 265</p> <p>8.5 Multi-Domain Vertical Alignment Cells 266</p> <p>8.5.1 MVA with a positive a film and a negative c film 269</p> <p>8.5.2 MVA with a positive a, a negative a, and a negative c film 273</p> <p>8.6 Optically Compensated Bend Cell 277</p> <p>8.6.1 Voltage-dependent transmittance 278</p> <p>8.6.2 Compensation films for OCB 279</p> <p>Homework Problems 281</p> <p>References 283</p> <p><b>9 Reflective and Transflective Liquid Crystal Displays 285</b></p> <p>9.1 Introduction 285</p> <p>9.2 Reflective Liquid Crystal Displays 286</p> <p>9.2.1 Film-compensated homogeneous cell 287</p> <p>9.2.2 Mixed-mode twisted nematic (MTN) cells 289</p> <p>9.3 Transflector 290</p> <p>9.3.1 Openings-on-metal transflector 290</p> <p>9.3.2 Half-mirror metal transflector 291</p> <p>9.3.3 Multilayer dielectric film transflector 292</p> <p>9.3.4 Orthogonal polarization transflectors 292</p> <p>9.4 Classification of Transflective LCDs 293</p> <p>9.4.1 Absorption-type transflective LCDs 294</p> <p>9.4.2 Scattering-type transflective LCDs 296</p> <p>9.4.3 Scattering and absorption type transflective LCDs 298</p> <p>9.4.4 Reflection-type transflective LCDs 300</p> <p>9.4.5 Phase retardation type 302</p> <p>9.5 Dual-Cell-Gap Transflective LCDs 312</p> <p>9.6 Single-Cell-Gap Transflective LCDs 314</p> <p>9.7 Performance of Transflective LCDs 314</p> <p>9.7.1 Color balance 314</p> <p>9.7.2 Image brightness 315</p> <p>9.7.3 Viewing angle 315</p> <p>Homework Problems 316</p> <p>References 316</p> <p><b>10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays 321</b></p> <p>10.1 Segmented Displays 321</p> <p>10.2 Passive Matrix Displays and Drive Scheme 322</p> <p>10.3 Active Matrix Displays 326</p> <p>10.3.1 TFT structure 328</p> <p>10.3.2 TFT operation principles 329</p> <p>10.4 Bistable Ferroelectric LCD and Drive Scheme 330</p> <p>10.5 Bistable Nematic Displays 332</p> <p>10.5.1 Introduction 332</p> <p>10.5.2 Twisted-untwisted bistable nematic LCDs 333</p> <p>10.5.3 Surface-stabilized nematic liquid crystals 339</p> <p>10.6 Bistable Cholesteric Reflective Display 342</p> <p>10.6.1 Introduction 342</p> <p>10.6.2 Optical properties of bistable Ch reflective displays 344</p> <p>10.6.3 Encapsulated cholesteric liquid crystal displays 347</p> <p>10.6.4 Transition between cholesteric states 347</p> <p>10.6.5 Drive schemes for bistable Ch displays 355</p> <p>Homework Problems 358</p> <p>References 359</p> <p><b>11 Liquid Crystal/Polymer Composites 363</b></p> <p>11.1 Introduction 363</p> <p>11.2 Phase Separation 365</p> <p>11.2.1 Binary mixture 365</p> <p>11.2.2 Phase diagram and thermal induced phase separation 369</p> <p>11.2.3 Polymerization induced phase separation 371</p> <p>11.2.4 Solvent-induced phase separation 374</p> <p>11.2.5 Encapsulation 376</p> <p>11.3 Scattering Properties of LCPCs 377</p> <p>11.4 Polymer Dispersed Liquid Crystals 383</p> <p>11.4.1 Liquid crystal droplet configurations in PDLCs 383</p> <p>11.4.2 Switching PDLCs 385</p> <p>11.4.3 Scattering PDLC devices 387</p> <p>11.4.4 Dichroic dye-doped PDLC 391</p> <p>11.4.5 Holographic PDLCs 393</p> <p>11.5 PSLCs 395</p> <p>11.5.1 Preparation of PSLCs 395</p> <p>11.5.2 Working modes of scattering PSLCs 396</p> <p>11.6 Scattering-Based Displays from LCPCs 400</p> <p>11.6.1 Reflective displays 400</p> <p>11.6.2 Projection displays 402</p> <p>11.6.3 Transmissive direct-view displays 403</p> <p>11.7 Polymer-Stabilized LCDs 403</p> <p>Homework Problems 407</p> <p>References 409</p> <p><b>12 Tunable Liquid Crystal Photonic Devices 413</b></p> <p>12.1 Introduction 413</p> <p>12.2 Laser Beam Steering 414</p> <p>12.2.1 Optical phased array 415</p> <p>12.2.2 Prism-based beam steering 417</p> <p>12.3 Variable Optical Attenuators 419</p> <p>12.4 Tunable-Focus Lens 423</p> <p>12.4.1 Tunable-focus spherical lens 423</p> <p>12.4.2 Tunable-focus cylindrical lens 426</p> <p>12.4.3 Switchable positive and negative microlens 428</p> <p>12.4.4 Hermaphroditic LC microlens 434</p> <p>12.5 Polarization-Independent LC Devices 435</p> <p>12.5.1 Double-layered homogeneous LC cells 436</p> <p>12.5.2 Double-layered LC gels 438</p> <p>Homework Problems 441</p> <p>References 442</p> <p><b>13 Blue Phases of Chiral Liquid Crystals 445</b></p> <p>13.1 Introduction 445</p> <p>13.2 Phase Diagram of Blue Phases 446</p> <p>13.3 Reflection of Blue Phases 447</p> <p>13.3.1 Basics of crystal structure and X-ray diffraction 447</p> <p>13.3.2 Bragg reflection of blue phases 449</p> <p>13.4 Structure of Blue Phase 451</p> <p>13.4.1 Defect theory 452</p> <p>13.4.2 Landau theory 459</p> <p>13.5 Optical Properties of Blue Phase 471</p> <p>13.5.1 Reflection 471</p> <p>13.5.2 Transmission 472</p> <p>Homework Problems 475</p> <p>References 475</p> <p><b>14 Polymer-Stabilized Blue Phase Liquid Crystals 477</b></p> <p>14.1 Introduction 477</p> <p>14.2 Polymer-Stabilized Blue Phases 480</p> <p>14.2.1 Nematic LC host 482</p> <p>14.2.2 Chiral dopants 483</p> <p>14.2.3 Monomers 483</p> <p>14.3 Kerr Effect 484</p> <p>14.3.1 Extended Kerr effect 486</p> <p>14.3.2 Wavelength effect 489</p> <p>14.3.3 Frequency effect 490</p> <p>14.3.4 Temperature effects 491</p> <p>14.4 Device Configurations 496</p> <p>14.4.1 In-plane-switching BPLCD 497</p> <p>14.4.2 Protruded electrodes 501</p> <p>14.4.3 Etched electrodes 504</p> <p>14.4.4 Single gamma curve 504</p> <p>14.5 Vertical Field Switching 507</p> <p>14.5.1 Device structure 507</p> <p>14.5.2 Experiments and simulations 508</p> <p>14.6 Phase Modulation 510</p> <p>References 510</p> <p><b>15 Liquid Crystal Display Components 513</b></p> <p>15.1 Introduction 513</p> <p>15.2 Light Source 513</p> <p>15.3 Light-guide 516</p> <p>15.4 Diffuser 516</p> <p>15.5 Collimation Film 518</p> <p>15.6 Polarizer 519</p> <p>15.6.1 Dichroic absorbing polarizer 520</p> <p>15.6.2 Dichroic reflective polarizer 521</p> <p>15.7 Compensation Film 530</p> <p>15.7.1 Form birefringence compensation film 531</p> <p>15.7.2 Discotic liquid crystal compensation film 531</p> <p>15.7.3 Compensation film from rigid polymer chains 532</p> <p>15.7.4 Drawn polymer compensation film 533</p> <p>15.8 Color Filter 535</p> <p>References 536</p> <p><b>16 Three-Dimensional Displays 539</b></p> <p>16.1 Introduction 539</p> <p>16.2 Depth Cues 539</p> <p>16.2.1 Binocular disparity 539</p> <p>16.2.2 Convergence 540</p> <p>16.2.3 Motion parallax 540</p> <p>16.2.4 Accommodation 541</p> <p>16.3 Stereoscopic Displays 541</p> <p>16.3.1 Head-mounted displays 542</p> <p>16.3.2 Anaglyph 542</p> <p>16.3.3 Time sequential stereoscopic displays with shutter glasses 542</p> <p>16.3.4 Stereoscopic displays with polarizing glasses 544</p> <p>16.4 Autostereoscopic Displays 546</p> <p>16.4.1 Autostereoscopic displays based on parallax barriers 546</p> <p>16.4.2 Autostereoscopic displays based on lenticular lens array 550</p> <p>16.4.3 Directional backlight 552</p> <p>16.5 Integral imaging 553</p> <p>16.6 Holography 554</p> <p>16.7 Volumetric displays 556</p> <p>16.7.1 Swept volumetric displays 556</p> <p>16.7.2 Multi-planar volumetric displays 557</p> <p>16.7.3 Points volumetric displays 560</p> <p>References 560</p> <p>Index 565</p>
<p><b>Deng-Ke Yang</b> Liquid Crystal Institute, Kent State University, USA <p><b>Shin-Tson Wu</b> College of Optics and Photonics, University of Central Florida, USA
<p>FUNDAMENTALS OF <b>LIQUID CRYSTAL DEVICES</b></br> SECOND EDITION <p>Liquid crystal devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology – advances in LCD research significantly contributed to by the authors. <p>This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research. <p><b>Key features:</b> <ul> <li>Updated throughout to reflect the latest technical state of the art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays</li> <li>Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices</li> <li>Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs, and tunable liquid crystal photonic devices</li> <li>Chapters conclude with detailed homework problems to further cement an understanding of the topic</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Pulsed Power
Pulsed Power
von: Gennady A. Mesyats
PDF ebook
309,23 €
High-Frequency Oscillator Design for Integrated Transceivers
High-Frequency Oscillator Design for Integrated Transceivers
von: J. van der Tang, Dieter Kasperkovitz, Arthur H.M. van Roermund
PDF ebook
149,79 €
MEMS Vibratory Gyroscopes
MEMS Vibratory Gyroscopes
von: Cenk Acar, Andrei Shkel
PDF ebook
149,79 €