Cover: Green Adhesives by Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

 

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Green Adhesives

Preparation, Properties and Applications



Edited by

Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri







No alt text required.

Preface

Synthetic adhesives are known for their toxic impact on the natural environment. In the emerging scientific world, many challenges are arising in the industrial sectors as a consequence of trying to meet the demands posed by upgraded technologies. The development of green adhesives based on renewable resources is the necessity of this age. Their importance is growing gradually as the commercial market is motivated to emphasize the benefits of green adhesives. Green adhesives, particularly those based on polysaccharides, have a number of good features, like biodegradability, biocompatibility, bio-inertness, antimicrobial activity, nontoxicity, and low cost, that keep pace with synthetic adhesives.

This edition of Green Adhesives: Preparation, Properties and Applications deals with the fabrication methods, characterization, and applications of green adhesives. It also includes the collective properties of waterborne, bio, and wound-healing green adhesives. Exclusive attention is devoted to discussing the applications of green adhesives in biomedical coatings, food, and industrial applications. This book will be useful for beginners and experts from undergraduate students to industrial engineers working in the field of polymer chemistry, materials science, and engineering. Based on thematic topics, this edition contains the following ten chapters:

Chapter 1 provides an overview of current research progress, major challenges, and future perspectives of the developed anti-adhesive coatings, including hydrophilic polymers, zwitterionic polymers, superhydrophobic polymers, slippery liquid-infused porous surfaces (SLIPS), and protein or glycoprotein-based coatings. Three bifunctional coatings with anti-adhesive and antibacterial activities are also discussed.

Chapter 2 focuses on adhesives that are synthesized with renewable lignin. The structure and reactivity of various industrial lignins are introduced in detail. The methods for modifying technical lignins to improve their reactivity for the synthesis of bio-based adhesives and the performances of resultant adhesives are discussed.

Chapter 3 describes the predominant role of green adhesives in various industrial applications. It further enumerates various categories of green adhesives by pointing out its vital material characterization concerning robotics, microelectronics, and space applications. Moreover, its contribution to powder coating, leather tanning, fiberboard, and dental fields are also discussed.

Chapter 4 highlights some green adhesives produced from polysaccharides or biopolymers which are widely available and play an important role in biomedical systems for various applications such as tissue engineering, drug and gene delivery, and wound healing. Several physicochemical characterizations of biopolymers and the main advantages and feasibility of some procedures found in the literature also are discussed.

Chapter 5 describes the procedures for modifying polymer systems into waterborne ones by the incorporation of hydrophilic segments by various means. It also demonstrates the structure and properties of waterborne epoxy and polyurethanes that could be used in adhesive applications.

Chapter 6 discusses the preparation of furfuryl alcohol-based adhesives. The methods of preparing polyfurfuryl alcohol-based sealants without blistering based on temperature, amount of the catalyst, as well as thickness of the end products are discussed in detail and validated by mathematical model.

Chapter 7 deals with the overview of bioadhesives, their history, and classification. It also elaborates the mechanism of bioadhesion along with the testing methods and application of bioadhesives. Focus is placed on bioadhesion mechanisms like sealants, adhesives, hemostatic proxies, etc. This chapter may open doors for researchers working on metals, alloys, and composite materials by introducing a better way of avoiding the failure of the elements using bioadhesives.

Chapter 8 details the development of polysaccharide adhesives based on renewable resources.

Chapter 9 describes the role of adhesives in the healing of wounds that appear after surgical incisions, endoscopic processes, dental procedures, ocular surgeries of both cornea and retina, cataract, pancreatectomy, gastric incisions, inguinal hernia repair, variceal bleeding, knee arthroplasty, cardiac surgeries, diabetic foot ulcers, accidental lacerations, and burns.

Chapter 10 discusses synthetic or renewable adhesive systems that can replace formaldehyde-based adhesives. In this chapter, recent research on wood flooring adhesives is included.

Chapter 11 focuses on the basic characteristics, classification, production, benefits, properties, application of synthetic adhesives and resins for bonding glass, metals, ceramics, wood, rubber, foil, paper, leather, cloth, plastic films, and some structural materials.

Editors
Inamuddin
Rajender Boddula
Mohd Imran Ahmed
Abdullah M. Asiri