Details

Theory and Modeling of Polymer Nanocomposites


Theory and Modeling of Polymer Nanocomposites


Springer Series in Materials Science, Band 310

von: Valeriy V. Ginzburg, Lisa M. Hall

160,49 €

Verlag: Springer
Format: PDF
Veröffentl.: 16.12.2020
ISBN/EAN: 9783030604431
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book usefulfor academic and industrial practitioners alike.
<div>Introduction.- Part I. Structure and Morphology.-&nbsp;Chapter 1. Atomistic and Molecular Modeling of Polymer Nanocomposites.-&nbsp;Chapter 2. Coarse-grained modeling: Particle-based Approaches.-&nbsp;Chapter 3. Coarse-grained modeling: Field-based Approaches.-&nbsp;Chapter 4. Multiscale modeling examples.-&nbsp;Part II. Dynamics and Rheology.-&nbsp;Chapter 5. Diffusion in Polymer Nanocomposites.-&nbsp;Chapter 6. Linear Rheology of Polymer Nanocomposites.-&nbsp;Chapter 7. Nonlinear Rheology and Mechanics of Polymer Nanocomposites.-&nbsp;Part III. Physical Property Prediction.-&nbsp;Chapter 8. Thermal Conductivity.-&nbsp;Chapter 9. Electrical Conductivity.-&nbsp;Chapter 10. Optical Properties.-&nbsp;Chapter 11. Barrier Properties.-&nbsp;Chapter 12. Dielectric Breakdown.-&nbsp;Chapter 13. Flammability.-&nbsp;Summary.- Index.</div>
This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book usefulfor academic and industrial practitioners alike.
Provides a roadmap for researchers designing new polymer nanocomposites Presents best practices for predicting and tuning special properties of potential new materials Combines modeling methodology with detailed examples for broad appeal Brings together academic and industry perspectives

Diese Produkte könnten Sie auch interessieren:

Neutron Applications in Earth, Energy and Environmental Sciences
Neutron Applications in Earth, Energy and Environmental Sciences
von: Liyuan Liang, Romano Rinaldi, Helmut Schober
PDF ebook
149,79 €
Nanobioelectronics - for Electronics, Biology, and Medicine
Nanobioelectronics - for Electronics, Biology, and Medicine
von: Andreas Offenhäusser, Ross Rinaldi
PDF ebook
96,29 €
Autonomous Robots
Autonomous Robots
von: Farbod Fahimi
PDF ebook
117,69 €